Call E SIR measurable
$$
(E \in M)
$$
 if
\nthe ffllwung condition 0 - Cavothedory
\n $\overrightarrow{n}(A) = m^*(A \cap E) + m^*(A \cap E) \forall A \subseteq R$
\nBy the subadditivity of m^* , \overrightarrow{h} is the case \overrightarrow{dh}
\n $(\overrightarrow{n}(A)) > m^*(A \cap E) + m^*(A \cap E) \forall A \subseteq R$
\nBy the subadditivity of m^* , \overrightarrow{h} is the case \overrightarrow{dh}
\n $(\overrightarrow{n}(A)) > m^*(A \cap E) = 0$ (so $m^*(A \cap E) = 0$ and
\n $(\overrightarrow{n}(A)) > \overrightarrow{h}$ (A $\overrightarrow{n}(B) = 0$) (so $m^*(A \cap E) = 0$ and
\n $(\overrightarrow{n}(A)) > \overrightarrow{h}$ (A $\overrightarrow{n}(B) = 0$) (so $m^*(A \cap E) = 0$ and
\n $(\overrightarrow{n}(A)) > \overrightarrow{h}$ (A $\overrightarrow{n}(B) = 0$) (B $m^*(A) = 0$)
\n \overrightarrow{h} (b) From in this setup, \overrightarrow{h} (c) \overrightarrow{h} (d) \overrightarrow{h} (e) \overrightarrow{h}
\nand $m := m^* \mid m$ (f) a measure :
\n $m \mid m = m^* \mid m$ (g) \overrightarrow{h} (h) \overrightarrow{h} (h) \overrightarrow{h}
\nand $m := m^* \mid m$ (i) \overrightarrow{h} (j) \overrightarrow{h} (k) \overrightarrow{h}
\nand $m := m^* \mid m$ (k) \overrightarrow{h} (l) \overrightarrow{h} (l) \overrightarrow{h} (l) \overrightarrow{h}
\n \overrightarrow{h} (l) \overrightarrow{h} (m) \overrightarrow{h} (l) \overrightarrow{h} (l) \overrightarrow{h} (l) \overrightarrow{h}
\

becanse
\n
$$
E_{1} \cup E_{2} = E_{1} \cup \{\widetilde{E}_{1} \cap E_{2}\} \cup \{\text{O(peak 1)}\}
$$
\n
$$
E_{2} \cup \text{Cm} \text{ yna druthy che0k (s.milmy) hah-}
$$
\n
$$
E_{1}, E_{2} \in M \Rightarrow E_{1}E_{2} \in M
$$
\n
$$
Q = \text{Let } E_{1}, E_{2} \in M \Rightarrow E_{1}E_{2} \in M
$$
\n
$$
= \binom{h}{h} m_{1}^{h} (A \cap (E_{1} \cup ... \cup E_{n})) = \sum_{i=1}^{n} m_{i}^{h} (A_{0} E_{i}^{2}), \forall A \in \mathbb{R}.
$$
\n
$$
(H_{1} \cap m_{1}^{h} (A \cap (E_{1} \cup ... \cup E_{n})) = \sum_{i=1}^{n} m_{i}^{h} (A_{0} E_{i}^{2}), \forall A \in \mathbb{R}.
$$
\n
$$
(H_{2} \in E_{1} \cap M \text{ and } E_{2} = E \text{ then } (H_{1} \cup \text{ is simply } (H_{2})).
$$
\n
$$
= M_{1}^{h} (E_{1}) + M_{1}^{h} (A_{1} E_{1}^{2} \cup ... \cup E_{n})) \cap E_{n} + M_{1}^{h} (A_{1} E_{1}^{2} \cup ... \cup E_{n})) \cap E_{n} \Rightarrow M_{1}^{h} (E_{1}^{2} \cup ... \cup E_{n})) \cap E_{n} \Rightarrow M_{1}^{h} (E_{1}^{2} \cup ... \cup E_{n})) \cap E_{n} \Rightarrow M_{1}^{h} (E_{1}^{2} \cup ... \cup E_{n}) = \sum_{i=1}^{n} m_{i}^{h} (A_{1} E_{i}^{2} \cup ... \cup B_{n}) \cap E_{n} \Rightarrow M_{1}^{h} (E_{1}^{2} \cup ... \cup E_{n})) \cap E_{n} \Rightarrow M_{1}^{h} (E_{1}^{2} \cup ... \cup E_{n})) \cap E_{n} \Rightarrow M_{1}^{h} (E_{1}^{2} \cup ... \cup E_{n}) = \sum_{i=1}^{n} m_{i}^{h} (A_{1} E_{i}^{2} \cup ... \cup B_{n}) \cap M_{1}^{h
$$

$$
\frac{1}{2} \int_{\mathfrak{m}}^{m} (A_{n} \overrightarrow{u}) \underline{F} \underline{F} \underline{F} + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} m^{*}(A_{n} \underline{F} \underline{F}) + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} m^{*}(A_{n} \underline{F} \underline{F}) + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} m^{*}(A_{n} \underline{F}) + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} m^{*}(A_{n} \underline{F}) + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} m^{*}(A_{n} \underline{F}) + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} (a_{i} + a) \underline{F} \underline{F}
$$
\n
$$
= \sum_{i=1}^{n} (a_{i} + a) \underline{F} \underline{F}
$$
\n
$$
= \sum_{i=1}^{n} (a_{i} + a) \underline{F} \underline{F}
$$
\n
$$
= \sum_{i=1}^{n} (a_{i} + a) \underline{F} \underline{F}
$$
\n
$$
= \sum_{i=1}^{n} (a_{i} + a) \underline{F} \underline{F}
$$
\n
$$
= \sum_{i=1}^{n} (A_{i} \underline{F}) + m^{*}(A_{n} \underline{F})
$$
\n
$$
= \sum_{i=1}^{n} (A_{i} \underline{
$$

13. Jan can now do happen
\nhas a *other* with following
$$
\frac{1}{2}
$$
 and $\frac{1}{2}$
\n 1 and 1 and 1 are 1
\n 1

$$
^{d_{\mathcal{W}}d}(\mathcal{U}\cup\mathcal{F}_{0})\setminus E\subseteq(\mathcal{U}\setminus E)\cup(\mathcal{F}_{0})
$$

find by
$$
m(f) = m(E) + m(G \setminus E)
$$

\nfind $m(G \setminus E) = m(G) - m(E) \leq \epsilon$.

\nNext, $cosidw$ the general case: $m(E) \leq +\infty$.

\nLet $E_n : E \cap (-n, n) \quad \forall n \in \mathbb{N}$. By the $fraced(n) + \text{area} \leq m(G) + \text{area} \leq m(G)$.

\nSeconding how a. applying ϵ_n E_n (with $m(E_n) \leq m$)

\nThen $G_n \geq E_n$ s.t. $m(G_n \setminus E_n) \leq \frac{E_n}{e^n}$. Let

\n $G := \bigcup_{n=1}^{\infty} G_n$ ($\epsilon \in \mathbb{C}$)

Then G is an open set containing E
and G₁E
$$
\subseteq
$$
 U(Gr₁) E₁) of men $\leq \frac{\omega}{2} \frac{\epsilon}{n^{2}} = \epsilon$

(i)
$$
\Rightarrow
$$
 (ii) \Rightarrow (i)
\n(i) \Rightarrow (ii) \Rightarrow (i)
\n(iv) \Rightarrow (v)
\n3. (i) \neg (v) are mutually equivalent
\n(i) \Rightarrow (v)
\n3. (i) \neg (v) are mutually equivalent
\n(j) π (E) $\angle + \infty \Rightarrow$ (vi)
\n(π (ii) hold)
\nopun G 2 E s.t. π (G) \angle m(E) + ϵ . By the structure
\nTh \Rightarrow of un subs G = $\bigcup_{n \in \mathbb{N}}$ In which disjoint open
\nivity only In $\forall n$: $\text{Thus }^{\text{max}}_{n \in \mathbb{N}}$
\n \Rightarrow π (I_n) = $\sum_{n=1}^{\infty}$ l(I_n)
\n \Rightarrow \exists N \in N s.t. $\sum_{n=\mathbb{N}+1}^{+\infty}$ l(I_n) ϵ . Let U = $\bigcup_{i=1}^{\infty}$ I_n.

Thus
\n
$$
MAE \subseteq (G \setminus E) \cup (\bigcup_{i=M}^{a} L_{i}) \text{ phase of }meas(1+228)
$$
,

Appendix
\n(X, X, M) is called
\n1) a measure space if X is and a met
\n1) a measure space if X is a net and X
\n1) a S-algebra (g such sets of X) and
\n1)
$$
(M(6)=0
$$
 and 16 cumulative) additive)
\n2) a probability span if if 16 a measure spail
\n2) a probability span if 16 a measure spail
\n3)

proof of (iii) . Let $A_{h} = B_{1} \setminus B_{n}$ $\forall n$. Then $exch$ An f \wedge \wedge and it follows from (i) 4 (ii) that
 $\lim_{n \to \infty} \int_{\mu(B_n)-\mu(B_n)}^{\mu(B_n)-\mu(B_n)} \lim_{n \to \infty} \mu(B_n) = \mu(B_n) = \mu(B_n) - \mu(B_n)$ $50 \mu(B) = \lim_{n} \mu(B_{n})$